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ALOUETTE PLASMA RESONANCE PHENOMENA
by
J. A, Tataronis and F, W, Crawford

Institute for Plasma Research
Stanford University
Stanford, California

ABSTRACT

Following experimental observations of ionospheric "ringing"
obtained by the Alouette I topside sounder, it has been established
theoretically that a magnetoplasma is capable of ringing at harmonics
of the electron gyrofrequency, and at thé upper hybrid frequency. This
resonance phenomenon arises theoretically from singularities of the
plasma Green's function due to the pinching of the real wave-number axis

by zeros of the dispersion relation describing the normal plasma modes,

Typically, there are three values of the wave-number, kL , where pinch-
ing occurs: First, at k; = 0., second at kl =+ oo , and third at
special values where 0 < kL < o . The last type of ringing does not

appear to have been observed either in the ionosphere or in the labora-
tory. In this paper, a numerical study is made of the three cases to
determine the relative strengths of the corresponding ionospheric reson-
ances, and hence to determine which resonances are to be expected in

sounder experiments,



1. INTRODUCTION

In recent years, it has been established that strong resonances can
be excited in a magnetoplasma. Such resonances have been stimulated in
the ionosphere, with the aid of rockétsl’z and satellites,3 and in lab-
oratory plasmas.4 What is generally observed is an oscillatory signal,
which we shall term 'ringing', which persists for many periods after sub-

Jjecting the plasma to a pulse, Ringing can occur at the electron plasma

frequency, wp , the upper hybrid frequency, Wy [= (mi + wi)l/g] and
harmonics of the electron gyrofrequency, uuc . Calvert and Goe5 have

summarized the results of ionospheric experiments., Crawford, Harp, and
Mantei4 have given results of laboratory experiments on the stimulation
of plasma resonances,

Several 1:heor:‘1e36_11 have been presented to explain these resonance
effects., Agreement with experimental observations is good in that reson-
ances can be predicted at w_, w

P H '’
other resonances predicted that have not been observed experimentally in

and nmc . There are, however,

either the ionosphere or the laboratory. One such class consists of
resonances which can only be excited at an angle oblique to the magnetic
field.12 Another example occurs for a series of special frequencies and
wave-numbers when the excitation is perpendicular to the magnetic field.ll
The purpose of this paper is to make a theoretical study of magneto-
plasma resonance phenomena occurring perpendicular to the magnetic field
in order to determine the relative strengths of the resonances, and hence
to determine which are to be expected experimentally. A one-dimensional,
quasistatic theory will be presented in which we follow previous
author's,g—11 and characterize the plasma by a Green's function, G(w,x)
The spatial and temporal forms of the resonances are then determined by
the singularities of G(w,x) on the real w axis. A numerical study
has been made of the relative strengths of the elebtric fields at the
various resonances for the case of excitation by a planar dipole charge
sheet, and of the current and voltage response for excitation by a pair

of permeable planar grids,



2. BASIC EQUATIONS

In this section, we present the equations describing the plasma
behavior, The plasma is assumed uniform and infinite, with an isotropic

Maxwellian electron velocity distribution,
. ~.213/2 2 2 2
fo(xL,v“) = (1/2ﬁ\t) exp[ (vL + V“)/ZVtJ , (1)

1
where vt [E (mTe/m) /2] is the electron thermal speed, and v_L and
vI are the components of the electron velocity, v , perpendicular and
parallel to the external magnetic field, ‘30 . Ion motion will be neg-

lected. The basic equations are Poisson's equation,
V'E (r,t) = p _(z,t) - e noj‘ dv £, (v,r,t) (2)

for the fluctuating electric field, -El , and the linearized Vlasov equa-

tion for the lowest order term in the perturbation expansion of the elec~

tron velocity distribution,

of of df of
—— V""‘—}' -— E v B .——..:.l- — E E '_—-.1 (3)
3t T ~ dr m~ X =g 3v  ~ m~lav

Here, Pg is the external charge density representing the source of the
perturbations; -e 1is the electronic charge; m is the electronic mass,
and n, ( = Do = nio) is the average charged~particle density. We make
the quasistatic approximation, rather than using the complete set of
Maxwell's equations, and justify this by inference from the laboratory
results which show resonances for conditions where the free space wave-
length exceeds the plasma dimensions.

We shall assume that the resonances are stimulated by a planar dipole
antenna consisting of two uniform, parallel, sheet charges, equal to mag-

nitude but opposite in sign, and oriented along 4§0 . For this source,

we have



p_(x,t) = 1lim q (t) [d6(x + a/2) - 8(x - a/2) = - f (0 da(x)
S a0 S

(4)

where fs(t) E lim aqs(t) as @a*0) 1is the strength of the dipole;
qs(t) is the surface charge density on one sheet; a 1is the distance
between the sheets, 8 1is the Dirac delta-function, and x is the
spatial variable perpendicular to -EO’ and hence to the sheets, The
planar symmetry implies that the gradient operator, V¥V , can be replaced
in Egs. (2) and (3) by (A/Bx) 2 , where § is a unit vector along the
x—axis.
To solve Egs., (2) and (3), we introduce a Fourier transform in

space, and a Laplace transform in time,

0 o0
EG ,w) = [dt [ dx exp i(k x - wt) E(x,t) 5)
O hie e ]
and the inverse transformations,
das 00 dk
E(x,t) I by I 5;— exp i(wt - kLX) E(kL,w) , (6)
Cc ~c0

where C is the Laplace contour in the lower half complex « plane,

Substituting Eq. (4) in Eq. (2), and then transforming Eqs. (2) and (3)

with respect to x and t , yields after using Eq. (1) for the elec-

tron velocity distribution,

fs(w)

E(ki_,w) = W ) (P

where fsﬁb) is the Laplace transform of f (t) and the relative plasma

.1
permittivity perpendicular to the magnetic field is 3



2 o0
Wy exp(-3) I (x) o
K,k ) = " E e (8)
c
Lo p=-
and ) has been written for (klvt/u.)c)2 . Equation (7) is now inverted

‘with the aid of Eq. (6) to yield,

EGr,t) = [ 2 exp(int) 6(,x) £,) 9)
C
o dk exp (-ik x)
L 1
G2 = _£ I €, K@K (9

The Laplace contour C 1lies below all singularities of the integrand.
The existence of plasma resonance phenomena can be investigated by
examining the limiting form of Eq. (9) as t = o . This limit is obtain-
able by first deforming the contour C into the upper half complex ¢
plane around the singularities of the kernel, G(w,x) , and the source
function fs(w) , and then carrying out the integration along the new
contour, The analytic properties of fsﬁn) depend on the specific
source used to stimulate the resonances. For pulse excitation, which
we shall assume here, and which has been common experimentally, the source
will be an entire function of ¢ , i.e., free of any singularities, No
such statement can be made concerning the analyticity of G(w,x) . This

function is a member of a class of integrals that have the form

1¢z) = [ B9 4

1z D) , (11)
r

where [° is some contour in the complex t plane, It has been
shown14’15’16 that I(z) is singular at a point =z = ZO if two or

-5 -



more poles of the integrand, i.e., zeros of q(z,t) , pinch T as =z

approaches zO (see Fig. 1). At the point of pinching in the complex t
plane, the derivative [3 q(z,t)/at] is zero. The presence of pinching
singularities of G(w,x) on the real  axis is responsible for reson-
ant effects., In what follows the analytic properties of G(w,x) will
be determined in order to obtain the time-asymptotic behavior of the
electric field., This will also enable us to predict the frequencies,

and the relative strengths of the resonances,



3. SINGULARITIES OF G(w, X)

The frequencies at which zeros of Kﬁb,kL) pinch the contour of
integration of Eq. (10), i.e., the real k-L axis, can be obtained by
solving the dispersion relation represented by Eq. (8) with ch,kl) =0
for  as a function of real k.L . The solutions are shown in Fig. 2,

It shouldlbe noted that, for a given kL , w is always real, 1In fact,
Bernstein 3 has shown that if the imaginary part of ¢y is less than

zero, and k_L is real, then the dispersion relation cannot be satisfied.
This implies that G(w,x) has no pinching singularities in the lower half
complex ¢ plane. It will be seen from Fig. 2 that kL may also be real
for some ranges of real ¢ . 1In this situation, poles of the integrand of
Eq. (10) are located on the real k¢ axis, and the integration is no
longer defined. Figure 3 shows how the definition of G(w,x) , is
readily extended by deforming the contour of integration ahead of an
advancing pole as the imaginary part of w approaches zero from nega-
tive values, However, useful deformation is impossible if ( approaches
a frequency where du)(k_L)/dk.L vanishes, since the contour of integration
is pinched at such a point, From Fig, 2, we note that cl(,b(l<.1-)/dk_L =0

at the following points:

(i) =0 when @w=mn , n=++2, +3 , ,,, , and when

k
=L
.(,L)=(,L)H

(ii) El finite and nonzero when lnlwc < < (]nl + 1)@C and

n=2, 3, .... This case is not present in every frequency

2
band., If lnlwc < (wp
sion curves shown that do/dk # 0 for w < lnlw and

1 c

+ w2)1/2 < (’nl + 1)y , the disper-
c c

0< k < w
4

(iii) EL =+ o when ¢ = nwc, where n = +1 , +2

We shall examine the three casesseparately to determine what types

of singularities are present,



3.1 Pinching at k_L =0

The zeros of K(w,kl) in the vicinity of the origin in the complex

k‘L plane are obtained by expanding Eq. (8) in a power series about
k =0 . For wa nw_ , this yields
2 2 2(n-1
ab 1 mp n’“Dc kL t ( )
K(Ua,kL) ~ 1 - 3 - > , nh=2
o - w 2n!wc‘°"m’c Pe
(12)
If o~ - . where n 2= 2 , the correct form for KQD,kL) is obtained
by replacing « in Eq. (12) by - w . Hence, any resonance found on the

positive real (y axis has associated with it a mirror image on the nega-
tive axis, For this reason, it is sufficient to restrict our work to
positive harmonics of wc

The zeros of Eq. (12) are located at

1
w wz wz W - 2nh)
kK = —<{2%r L1 - E < exp(i 32X 4} (13)
1] v 2 2 2 oy n-1
t w w - w c
P c
where j =1, ..., 2(n-1) . Since = nwc , and in the lower half

plane, it is convenient to replace « in Eq. (13) by [nwc + 5 exp 16]
where © is a small expansion parameter,and -x < 6 < 0 . This yields

to lowest significant order in & ,

L
9 2(n~-1)
w n w W .
' -1
. -cf2mn! cf _ 1 Pl exp |1 24 )t + © (14)
1J v o 2 2 2 2(n-1)
t C a)p n -1 LL)C

Equation (14) implies that there are 2(n-1) poles of the integrand of
Eq. (10) surrounding the origin in the complex k; plane, with (n-1)
of them above the real axis and (n-1) below,

As 5= 0, and ="~ mbc , the poles converge toward the origin

t . .
to form a 2(n-1) h root of the dispersion relation that pinches the



real axis, and hence the contour of integration, at kl =0

It is now simple to find the form of G(w,x) near nmc . Because

of the poles surrounding the origin, the most significant contribution

to Eq. (10) will come from values of kL near zero., Therefore, an

approximation to the integral can be obtained by substituting for the

integrand its small argument expansion. Carrying this out, and approx-

imating exp(—ika) by unity gives,

o ~ dk
G(w,x) = - (- mw ) f
2 c 2(n~-1
€0 2D ok @) e )
-0 1 C (o]
2 a0 /n 2(n-1)
b _ 2mn. "cl’¢c
Kc(w) = 1 > 5 ’ o = . 5 (v ) . (15)
W= w, c wp t

It will be noted that Kc(w) is the cold plasma relative permittivity

component perpendicular to the magnetic field.
The integration in Eq., (15) is accomplished by use of Cauchy's re-

sidue theorem, which permits us to write

le

Glw,x) = Tg-(w—mc)ZRes[kij(w)] , (16)
0 .

J

where the summation extends over the residues of the poles located in
the upper half complex plane at kjj . Equation (13) gives the posi-
tions of all poles near the origin. Those above the real axis are

listed in Table 1, It is readily established from Eq. (15) that the
2n-3

residue at k . is 1/2(n-1)k™
1] [ / ( ) 13 ]
and making use of Table 1, leads to,

Substituting this in Eq. (16) ,



Table 1.

POLES IN UPPER HALF k; PLANE FOR o=~ nw
c

1
wz 2(n-1)
o - 1 p 20V + O
Gy < Moy ki=elt -3 3 |° exp{l 2 -~ 1) '
n - lw
c
J= 2, , n
1
2(n-1
= W kt = znwc 62 ( ) ex {1 (=D + ©
Py = M i S 1972 2 P n - 1 ’
(n” - D
C
Jj = 2, , n
1
2 2(n-1)
o .
+ 1 p . (2j-Dx + 6
> = = - S s
Ly nw ij a3 5 1§53 exp |1 CYCREIES) ,
n - 1w
[¢]
j=1, ..., n-1
4 1
2(n-1) n
w )
c C o 2n-3
- - < %
Z-1) B E exp [ 10-1) —4=3 ﬂJ y Wy < T,
1 :
J=2
1 . -2
F(n-1) w-mw) "TE
6w, x) = 2 x < < exp[- 1G- 22 ) =
’ - iec 2(n-1) B n-1 ’ H c
0 2 s
J=2
1
2(n-1) n-1
- mp )2 poos
S exp[— i(23-1) —5————4 Wy > T
\\ 2(n~-1) 53 2(n-1)"{’ "H c
1

- 10 -



2n-3 2n-3 2n-3
2n-2 2n-2 2n-2

amn)
The finite sums can be closed by use of the identity17

n

sin o
E exp (ikyp) = ————53 exp (i E%l m) , (18)

k=1 Sin =

to obtain, finally, the expressions,

r . . b 1
i exp | i —————mmr —_—
1 [ 2(n-1 J 2(n-1
E‘ — ( ; w - nwc) (n ), Wy < W,
1 2(11"1) sin ETn——-i_)-
1 n-2
e AN . N 7T -
RN P o= T w1
Glw,x) = mETSE S ' » (w = nw) ) Wy = T,
0 2 2(n—1) sin m
1
1 -i 2(n~1
N = w - nwc) ( ), Wy > W
g 3 2(n-1) sin m
(19)
Clearly, there are singularities at g, (n =2,3, ...). When o & w,

the singularities are branch points, They are replaced by branch poles
when Wy is didentical to nwc . An exception to the rule occurs when
n=2. In this case, G(w,x) 1is regular, and no resonance is predicted,
In addition to the singularities found so far, there is one at Wy
The form of G(w,x) near this point is determined by the power series

expansion of K(w,k ) . For wa ay # ny, , this has the form, to lowest

significant order in k; ,

- 11 -



2 30,2 Kk v.\2
k) ~ —= - -
X (w, L) 5 (w ah) 5 s\ . (20)
w, w_ - 3w c
p p C

The zeros of K(w,kl) can be obtained by substituting for  the expres-

sion QDH + 3 exp i@) , where -, < @< 0 , This yields

- T2

: 2
+ 2 (Qp _ &Dc ex (ig> 2 > &bz
= 3 5 5 p 3 ‘Dp c ’
w_ Vv
Pt
ko= < 1/2 eL
5 (&bz _ 2
+1i Z &H c wp ex (i—) 2 < 3w
3 7 2 P\*3) ®p c
w Vv
p t
\.
These roots pinch the real axis as 8 - 0 . Taking the residues gives
for w=a Wyr
(‘
7
i 1 1 ’ wz - 3:bz ’
2¢ 1/2 P c
0 (W - awy)
Glw,x) =
7
_ 'z 1 ’ wz < 3()02 ,
2¢ 1/2 P c
O(OJ-OJH)
"«
1
2 2 2\ T2 2 /2
wiw - A w2 (30 = o
b\ p C C
6 2 » T2 T 2 (22)
BV bV

A branch pole is clearly evident at Wy -

- 12 -



3.2 Pinching at 0< kl < o,

Figure 2 shows branches of the form illustrated in Fig, 4, for which
o0’ -ko) , where (dw/dkl)
vanishes. If OK(w,k)/dw # O at these points, it is implied that

there are two points, QDO , ko) and (o

aK(w,kl)/akL = 0 . This condition is satisfied for the Maxwellian, for
all ® and k_L , since Eq. (8) gives,

BKQ» k )

ZLexp () IO) ne
> 0 . (23)
: : 2
(w = nw )

ONI’UN

N=-co

If, as indicated in Fig. 4, the dispersion relation has only a
double root at k for o = w
2 2 2
k kK™ =
3K, , k)/PK] = 3K, ,

expansion of ch,kl) about the point Qbo,ko) yields,

0 ° it is readily established that

-k )/Bk > 0 ., Hence, the Taylor series

3K (wg, k) 1 3Ky, k) 9
KQD,kL) N R w ~ @ ) + 5 —————E———— (k_L - ko) . (24)
dk
4
Since  1is in the lower half plane we substitute &DO + dexp i0] ",

with -3x< 6 < 0, and determine the roots of Eq. (24) for K(w’kx) =

We find two zeros on opposite sides of the real axis at

1/2
25 3K(w k. _Pw
. 0’0 ,
k = k =+ i = 5 exp i—
3 K(wo,ko)/akl

(25)

which converge to kO as d = 0, to form a double root that pinches the
contour of integration of Eq. (10). Similarly, there exist two zeros
of KQD,kL) near (—ko) which behave identically to those in Eq. (25)

and are located at

- 13 -



1/2
28 3K (w,, k) /Aw

o
k + i

0~ 2

g'K(r.oo,ko)/ak.L

K = - exp iz . (26)

Thus, for wa w residue evaluation of Egq. (10) yields

O ¥

2 cos kox 1
Glw,x) =~ ©7)
! 2 2 .1/2 1/2 °
€o[2@K/3w) B7K/3k]) ] 2 - Wg) /3
and reveals a branch pole at (, . The partial derivatives in this ex-

0
pression are evaluated at the point (u ,ko)

3.3 Pinching at k; =+ ©

It is clear from Fig, 2 that dw(k_L)/dk-L -0 as k - %@,
Therefore, pinching should be expected in this small wavelength limit.
There are, however, effects ignored in our theory that would wash out
any resulting singularities. One such effect is electron/neutral colli-
sions, When these are taken into account}sit is found that the solutions
of the dispersion relation indicate k.L complex for ¢ real. The real
parts of the solutions for kL effectively follow the collisionless sol-
utions, while the imaginary parts tend towards infinity as the real part
of k~L approaches infinity, This implies that any singularity in
G(w,x) , due to pinching of the contour of integration at kl = % in
a collisionless plasma, will move far into the upper half complex ¢
plane when collisions are introduced. Any resonance that may be excited
will be very heavily damped, and unobservable experimentally, In any
case, short wavelength effects predicted by the theory are non-physical,
They should be rejected whenever the wavelength is smaller that a Debye
length., With these considérations in mind, the predicted resonances due

to pinching at kL =+ %9 will not be considered further,

- 14 -



4, ASYMPTOTIC BEHAVIOR OF THE ELECTRIC FIELD

The asymptotic form of the electric field can now be obtained from
Eq. (9) by deforming the Laplace contour in the usual manner around the
singularities of G(w,x) located in Section 3, As t— o , Eq, (9)

reduces to

B ) ~ )0 [ 2 exp Giut) 6w £,0) 28)
I-l kit s
k k
where the summation is over the branch points of G(y,x) , and the

t
contour Tk extends around the k h branch cut, as shown in Fig. 5.

We now examine the kth term in Eq. (28) at each branch point.

4, = .
1L o=, .

Since the contribution to the integral from the part of Fk in the
upper half complex plane vanishes exponentially as t - ® | it is suffi-
cient to expand the integrand about ¢ = nwc and retain only the most
significant parts, Hence, in this limit, the kth term of Eq. (28)

approaches, for mH < nwc s

1
2(n-1) \ . bl
o fs(nwc) exp [1nmct + 1 EYE:IS]
B (xt) = c B . T T
071 2(n-1) sin m
1
dw . —
I = f o P[0 - ) t] (@ - w2 (29)
r
k

where use has been made of Eq. (19),and Fk is shown in Fig. 6. The
integration, Ik , along Fk can be written as a sum of three terms:

It can readily be shown that as -+ 0, I = 0,

+ IBCD + I BCD

{IAB DE]

Hence we have,

- 15 -



exp[-ixn/4(n-1)] sin[x/2(n-1)] F(Zn—l)

2n-2
Iy = Iag* Ipg = Zn-1 » (30)
ﬁ t2n—2

here I and I are evaluated with the identit 17
v AB DE ¥

o0

T
fdxxpexp (-gqx) = -—(—E_L—]l:l , fga>0; p+1>0) |, (31)
0 q

and ['(z) is the gamma function., After combining Eqs. (29) and (30),

we find that the component of the electric field at w = nw is, as

c
t—»oo,
1
a2(n-1) r EE:l f (g ) explinp t+ i S S
E (x,t) = - — 2n-2 s c | c 4(n-1) (32)
kT - 2x(n-1) €051 2n-1

t2n—2

A similar analysis for the remaining two cases, wy = o and

> .
W nwc , Yyields
.
az(n—l) T(—}-> f (aw ) cos exp(inb t 4+ i E)
E (x,t) = n-1 s c 2(n-1) c 2 (33)
kT 1(n-1) ¢ p 1 ’
072 —_—
n-1
t
for the former, and for the latter
1
Q?(n-l) T 2o-1 f (ny ) expling t - i ———5——]
E (x,t) = 2n-2 s c c 4(n—1): (34)
k- B 2n(n-1) € B, 2n-1

t2n—2

- 16 -



4.2 w=ow. (f nw ) .

The component of the electric field excited at the upper hybrid fre-
quency is obtained by combining Eq. (22) with the kth term in Eq. (29).
This yields the expression

£ | @ -1/2
E (x,t) = < exp (int)f o exp[i(w - wH)t] w - wH) )
0 17
2 r
k

(35)

where the upper bracketed entry applies for &F > Bwi , and the lower

for wp < 3mi . Carrying out the integration along the branch cut shown

in Fig. 6, and making use of the identity I (1/2) = nl/z , leads to
(71fs(wH) exp(i‘“Ht + 1 %E) 2 2
» 72, 1]z B T
E (x,t) = . oy (36)
79t s W) eXp(l‘”Ht -t 71'") 2o 32
2 ﬂl/zeo 1:1/27 ! p c !

4.3 o=, (0< k_L < ) ,

These are the singularities discussed in Section 3,2, Substituting
Eq. (27) into Eq. (28), and carrying out the branch cut integration, yields

for the electric field at this resonance,

2fszo) cos k x

E (x,t) = > g 73 exp(iwot)fg—‘-‘—) exp[i(w—wo)t](w-wo)—l/z
€, [2@K/3w) @7K/3K ) ] T T
k
. . T
B ZfSQDO) cos kOX exp(nbot + i Z) 7
e o [2xGK/30) @2k /212y 112 ¢1/2

where the partial derivatives are evaluated at Qbo,ko)

- 17 -



4.4 Region of Validity,

Equations (32)-(34), (36) and (37) are valid only for sufficiently
large values of time, This restriction results from'expanding K(w,x),
and hence limiting our representations of G(un,x) to small regions in
the complex y plane centered on the resonances, If the radius of one
of these regions is Sm , the corresponding branch cut integration in
Eq. (28) is correct only if t >> (1/6m) since the contribution from
the part of the contour Tk outside this region will then be exponen-
tially small. An estimate of Sm for the resonance at W, for

o, # Wy » can be obtained from Eqs. (12) and (14). Equation (12)

assumes that lkLvt/wc’ << 1 . Hence, from Eq. (14), we must have
2 n wz
. @ ]
1-—1 Pl2m C o (/s . (38)
2 21 nw 2
n - 1w c @
e b
where § = |w -np» |. An estimate of the time for which the asymptotic
c
results are valid is then t >> tc , Wwhere tc is equated to the LHS

of Eq. (38). A similar analysis for the 6ther resonances yields the

results:

- 1/2
2(J‘)H Znn!

y W =T o= ’
(nz -1 wi anAI c = %%

ZwH wp - &DC
tc = < > 5 S, Ug:a)H?énwc , (39)
3w w
P c

2 3K (wy, Ky /A

2.2 2
kko 3 K(wo,ko)/akl

The third expression assumes I(kL - ko)/k0| << 1 in Eq. (24).
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4.5 Comparison of Resonances,

To determine the relative strengths of the resonances, we normalize

. 2
Ek with respect to E = (fswc/eovt) Equations (32)-(36) then become,
E E
S e S U - S o -
B’ 2n-1 ' = W F oy B/ - 1 p @ = O, = Wy
2n-2 n-1
T T
Eys P3 . 4 o Eya Py (40)
. = s = ; = , D =W .
E/ Tl;z <'DH [ EI Tlﬁ 0

where all phase factors have been neglected, and we have introduced,

1
wz—@mﬁ)z meFZm&)
1 w -
T = ot , p = 2n(n—1)! 1 - P = 2n-2 ,
c 1 nZo1 w2 2 2x(n-1)
c ®p
.
, \20-3 2 2(n-2) F( 1 )COS .
o 2raeny: (222 ®p n-1 2(n-1)
Py = : 2n 2 n(n-1) ’
w
c
o 1/2
3 - 1/2 2 ’ 4 - 2. .1/2
2 % 9o \S | 2 [2 K /30) @2k /5,2) 1Y
(41)
To obtain p4 , we have assumed x small so that cos kox;z 1, and
have introduced ( = Qbﬂbc) and | = (kLvt/wc) . Numerical values of p
are given in Table 2, For p4 Wy nel indicates the passband within

which the resonance lies, and has been written in this form to disting-

uish the specific value of wO under consideration,
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TABLE 2: NUMERICAL VALUES OF p

o

Py P,
(mi/wi) n=2 3 4 5 6 :i_ 3
1 0.346 | 0.160| 0.112 | 0.089 | 0.076 ||~ | -
3 -—— lo0.156| 0.106 | 0.084 | 0.072 |[0 | -
5 0.155 | 0.201] 0.113 | 0.086 | 0.073 || - | -
8 0.077 | ——- | 0.141[ 0.095 | 0.076 || - |0.294
10 0.058 | 0.229| 0.179 | 0.103 | 0,080 || - | -
P3 Py
@l /o) w=ay || P®p3 | P34 | Pa5 | P56
p o]
1 0.137( 0.168 | 0.146 | 0.135 | 0,133
3 ——- |l 0.308 | 0.250 | 0.239 | 0.234
5 0.233| 0.413 | 0.340 | 0.318 | 0.303
8 0.529| --- |0.430 |0.392 | 0.388
10 —— |l -~= | o0.465 | 0.435 | 0.417

It will be seen from Eq. (40) that the decay rate at nbc (n> 1)
is critically dependent on wH . If @h % nwc , it decreases from
(1/t3/2) at” n=2 to (1/t) as n- oo . If Wy = Do, however, the
decay rates‘aré always slower than (l/t) , and vary from (l/tl/z) at
n=3 toalimit of a time-invariant amplitude as n— «» . When n = 2
Eq. (33) indicates that E(x,t) = 0 . There is no resonance for this
isolated case.

Next we compare the coefficients. Table 2 indicates p3,p4 > pl,pz
for (@i/wi)‘z 1 . Consequently, at times when Eq. (40) holds, the

resonances at wH and wO are stronger than at ny (n > 1), The dif-

ferences may be significant. For example, for (wiﬁwi) =5, the strong-
est resonance at nwc is p1 = 0,201 for n=3 ., At intermediate fre-
quencies, w34 with p4 = 0.34 predominates, Thus for -+ = 1000, corres-

ponding to 100 periods at the gyrofrequency, (Ekl/Ek4) = 2.7 x 1073

This suggests that resonance phenomena might be more easily detected at

- .20 ~



wO and “ﬁ than at npc . The opposite is found experimentally.4’5

The explanation is to be found in the quantity observed, which is not
normally E(x,t) but rather the current, I(t) , or voltage, V(t)

detected by probes. As shown by Nuttall,10 V(t) and 1I(t) may behave

?

differently in time, 1In the following sectiaon,we shall investigate these
quantities., To do so, we replace the dipole source used so far by two
permeable planar grids, distance a apart, oriented parallel to the magnetic

field, and will compute the impedance, Z(w) , between them,
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5. ASYMPTOTIC BEHAVIOR OF VOLTAGE AND CURRENT RESPONSE

5.1 Impedance, Z{(y) .

The continuity equation, and the current density equation,

o JE(x,t) ,

ax[Jxl(x,t) feg sl =0, T xt) = - enof dy 00,5, v,
(42)

must be solved together with the boundary conditions,

a/2
dx E(x,t) = V(t) Jo(x,t) + e BT = I(t)
x1 0 at x——a/2

-a/2 -

(43)

where V(t) is the voltage across the grids and I(t) is the resulting

current density from the external circuit, This yields

2l (W) sin kla/2

E(k ,w) = e Ko k) 3/ , (44)

where we have used Fourier and Laplace transforms in space and time,

respectively, and X{(w,k ) is defined by Eq. (8). Invertiﬁg Eq. (44)
L

gives,
2 ¥ dk  [sin k a/2\?
) 2 - - L =z (45)
I(w) =~ dwe 25 k a/2 K(w,k ) ’
0 L i
v el

If either I(w) or V(w) are specified, we can then describe the

probe response by

exp (iwt )M ,

exp(iwt) Z(w) I(w) , I(t) Z(w)

V(t) = f
c

oyl
Qs
rlg

(46)
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and the singularities of Z(w) determine the asymptotic time response,.

5.2 Singularities of Z(w)

Comparison of Eqs. (10) and (45) indicates that the singularities are
readily obtainable from the results of Section 3. The final expressions for
Z{w) near the singular points are as follows: For = w, multiply the
RHS of Eq. (19) by (az/iw) . For wa ay 4 W, multiply the RHS of Eq.
(22) by (az/iw) . For w=a Wy
(az/iw) [sin(kla/a)(kla/z)]2 .

The asymptotic time response can now be obtained as in Section 4 by

we replace cos kox in Eq. (27) by

carrying out the integrations in Eq. (46) along the branch cuts,

5.3 Voltage Response, V(t) .

These results have the same temporal behavior as those of E(x,t)
in Section 4, and the conclusions of Section 4.5 can also be applied,
The actual expressions‘for V(t) are as follows: For o = nbc , replace

. 2 .
f (o ) in Egs. (32)-(34) by [a ;(nbc)/lnwc]. For @ = wy 4 nw, , Te-
place fs(nbc) in Eq. (36) by [a I(ah)/le]. For o = ®g»

£ () cos k x in Eq. (37) by (aZIQmO)/in) [sin(kla/z)/(kj-a/z)]2

replace

5.4 Current Response, I(t)

The current behaves in a very different manner from the voltage. The
expressions analogous to Egs. (32)-(34), (36), and (37) can be shown to
be,

W= ¢
. 2 T 2n-3 . . 7
2 (n 1)B1S1n 5 =T) F<2n_2)expi}nwct i 4(n—1)}
T 2n-3 ’
t2n—2
(L)H < U(.OC
inp € V(w ) |2i(n-1)B_ sin X sin - T 2n-3 exp(inp t)
I(t) = c 0 C < 2 2(n-1) n-1 n-1 c
= 1 ﬂ 2n-3 ’
az a2(n"1) ¢ n-1
2n-3 wH ) HDC
. - . 7t
2i(n 1)&3 F<2n_2) exp{lnbct + Z?E:TS]
i 2n-3 ! (L)H > D(DC ’
\ t2n—2
47)
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w=w (¢ w)

( 1 exp (int + i —2—‘)
1/2 3/2 ’
t
ime Vi) |© 71
I(t) = _iﬁ_H_%__w}_I__< (48)
a . LS
1 egp (LDHt - i Z)
1/2 3/2 '
\7( / 72 t [
@ = (1)0
0 o\ L/2
e V) [2x@K/pw)(3%k/ml)| " exp (1t - %)
I(t) = - > e . (49)
2 sin koa/z) ¢
4x
kO a72

5.5 Comparison of Current Resonances,

To determine the relative strengthsof the current resonances, we
normalize I(t) with respect to I’ = (eovébcv/az) . Equations (47)-(49)

then become,

t
1 I w=m & w,) ; Iz() = "2 W= =
T . 2n-3 '’ - c ¥ “y ’ T’ - 2n-3 ' - c “H '’
2n-2 n-1
T T
t
IB(t) _ ~;%§ s wH(% ) I, ) 2?2 ey . GO
Il T 1’ T

where all phase factors have been neglected, and we have introduced

1
IR n(n-1) sin® —Z% F(Zn-S)
1l 1 wp ©p 2(n-1) 2n-2
a = Ame——l1l-—— 5 "
12 (n-1)! n-1 w w
C C
2n-3 271/(2n-1) . T s X
Q, = 2 1 2n “p N 21 -1 F('z—nfs)
= -1/
2 2% (n-1)1 \nZ-1 wi " ?



To obtain q it has been assumed that

Qg

@

o]

0-39 [27 BK/3Q) (azx/a,uz)]

ical values of q are given in Table 3.

to

1/2

TABLE 3: NUMERICAL VALUES OF gq .
4 a,
Quzﬂnz) n=2 3 4 5 6 2 3
Pre ,
1 0.921 | 1,059 | 0,951 [ 0.853 [ 0.776|f - | -
3 -—- | 1,083 1,005 | 0.904 |0.820[| 0| -
5 2.060 | 0,839 | 0.940 | 0.883 | 0.815|| - -
8 4,120 --- | 0,755 0.805 | 0,776|| - | 1.405
10 5.451 | 0.736 | 0.592 | 0.737 | 0.741}| - -
13 9y
Q”iﬂ”i) =g |} P23 | P34 | a5 | P56
1 1.643 || 3.5 | 5.95| 8.22 | 10.8
3 --- || 2.17| 3.44| 4.8 | 6.1
5 1.675 || 1.79| 2.69| 3.66 | 4.18
8 ——- -~ | 2.2 | 2.95]| 3.72
10 0.998 -- | 2.03} 2.65| 3.36

Equation (50) indicates that

V(t)

For qy, # w, ,  I(t)

the rate varying from

U)H and (,l)O ’
ticular,

2n-3

1/t

n—l)

the decay is considerably faster than

the decay at

/%

if a)H=n(1)c. At g

G

[ZSin(kla/Z)/kLa];e 1 . Numer-

I(t) behaves in an inverse manner

a/e

at nmc decays slower than

at n= 2

to  (1/

the decay is as

- 925 -

t) as n-—

1/t

a/e) .
wy is as (1/t3/2) for w, # mo, , and as

3/2y

wl

At

In par-

As

a



numerical example, we shall compare the resonance strengths for
2, 2
anﬁnc) = 5 and T = 1000 , It is evident from Table 4 that the

resonance current at o is two to three orders of magnitude weaker

0

than at npc . The corresponding value of (Ig(t)/I/) for the reson-
-5

ance at wH is 5.30 % 10 , which is of the same order as for wO

TABLE 4: COMPARISON OF RESONANCE STRENGTHS
2,2
prﬂ»c) =5 , ¢ = 1000

n = 2 3 4 5 6

3
107 I, (t)/I’ 65.1( 4,72 {2.97 2,09 | 1,63

10° 1,(t)/1' || 5.66( 8.50| 11.6 | 14.8

We should now compare these results with experimental observations.
In the laboratory, Crawford, et al.,4 observed the strongest resonances
at nwc , and a weaker resonance at Wy - No resonances were observed at
the points, Similarly,the Alouette I records5 show resonances at
oy and ., , but o resonances are absent, Theonly discordant point
with our theory is the prediction that wO and wH resonances should
have approximately equal strengths, Indeed, Table 4 shows the strengths
of the @g resonances increasing from w23 to w56 . The explanation

is very likely to be found in the neglect of collisional effects on the

18,19 that values of

@ resonances, It is illustrated elsewhere
(v/mc) > 10_‘3 have a very profound effecf on K for passbands with

nz2, and k #0
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6. RESONANCE AT THE GYROFREQUENCY

So far we have excluded the special case of resonance at ¢ . For
c

WA W, Eq. (8) can be approximated by,

2 exp(-ML, ()

K k ~
(w, j_) ~ Y B 5 (52)
@ =W
c
Substituting Eq. (52) in Eq. (45) yields
2 2 0 . 2
Z(w) aM T © Moo= o f dk (/2) oo kp/2
[a0) = = s = — —
o€y 2 25 LoexpGMI ) |k a/2
P ~00
(53)

For v, small, [2 exp(—x)Il(x)/x];z 1 and M in Eq. (53) reduces
to unity. Consequently, Z(p) has a simple zero at Wy and no re-
sonance effects will occur in V(t) ., It is evident from Eq. (46),
however, that a current resonance should be expected, Evaluating the
integral by residues, we obtain the following time-asymptotic component

at w ,
C

2
€ o®0p VGDC)
t = e i t .
I(t) PR exp(in t) (54)
No temporal decay is indicated, The electrons are set into motion by
the source function, and continue to gyrate at W, until such factors
as collisions and magnetic field inhomogeneity cause them to dephase,.

Such resonances have been observed in space5 and in the laboratory.
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7. DISCUSSION

In this paper, the resonant behavior of electrostatié magnetoplasma
oscillations stimulated perpendicular to the magnetic field has been
studied in planar geometry, for two cases. In the first of these, the
electric field was determined for excitation by a dipole charge sheet,
In the second, the voltage and current for excitation with parallel grids
was examined, In both cases, ringing at nmc(n > 1) , Wy and W, Wwas
predicted., The electric field for Case I and the voltage for Case II,
have similar asymptotic time dependence and strength, which disagrees
with the experimental data, The current for Case II does agree with
experiment, however, in which it is effectively the current drawn by a
probing antenna which is measured, The numerical results would have to
be modified for cylindrical geometry, but suggest strongly that Wy re—
sonances should be relatively weak compared with those at o, - The
wg resonances are predicted to be as strong as those at Wy but the

effect of even an extremely small collision frequency should be suffici-

ent to wash these out in practice.
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t 2(z)

t (2)

FIG. 1. SKETCH ILLUSTRATING ORIGIN OF SINGULARITIES IN I( z).
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| i |
0

| 2 3 4 5
FIG, 2., DISPERSION CHARACTERISTICS OF PERPENDICULARILY PROPAGATING

CYCLOTRON HARMONIC WAVES FOR A MAXWELLIAN ELECTRON VELOCITY
DISTRIBUTION,
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FIG. 3. CONTOUR OF INTEGRATION FOR G(®w,x) WHEN ® IS REAL,

- £

FIG, L., PORTION OF DISPERSION DIAGRAM FOR PERPENDICULAR
PROPAGATION IN A MAXWELLIAN PLASMA SHOWING POINTS -
WHERE THE SLOPE (db/dkl) VANISHES FOR 0 < k < o
1

ky



e e “2wg 2we 3we duw,

BRANCH CUT
— I

FIG. 5., CONTOUR OF INTEGRATION AROUND SINGULARITIES OF G(w,x)
(For clarity, singularities with O < k < ® have been
omitted.) 1

2 BRANCH CUT
Ik

FIG. 6. CONTOUR OF INTEGRATION (I, ) AROUND A
BRANCH-POINT OF G(®,x).
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